결과 내 검색

초고층 건물구조 시스템

Outrigger,Belt Truss 코어에서 캔틸레버 형태로 나와 외곽부의 기둥을 strut 나 tie 처럼 거동 응력과 하중 재분배 코어의 회전 지지,코어의 횡적처짐 모멘트 저항벨트트러스 : 수평 fascia stiffner 로서의 기능. 아웃리거트러스와 직접적으로 연결되지 않은 외부기둥들이 수평강성을 참여 유도 (cap truss : 불균등한 축방향력으로 인한 기둥의 길이 축소, 온도변화로 인한 내부와 외부의 상이한 거동의 균일화의 역할 ) Belt truss와 Outrigger는 코어의 응력을 외곽으로 전달시킴으로서 코어의 응력을 억제시키는 tie-down작용Belt truss와 Outrigger의 설치 후 그림 (b)와 같이 Outrigger가 지점 역할을 하여 코어의 변형에 변곡점이 생겨 전체적인 변형율의 줄어듬 Tube 구조의 특성 수평하중 저항시스템이 건물 외주부에 위치하므로 건물의 전체 폭이 모멘트에 저항 함 수평하중 저항시스템이 건물 외주부에 위치하므로 내부구조체는 연직하중만 지지하면 되므로 설계가 단순 결과적으로 기둥이나 보의 배치가 자유로움 튜브구조는 전층의 바닥구조를 동일하게 함 튜브구조는 튜브를 이루는 구조체를 전층 동일하게 하므로써 시공성이 뛰어남 John Hancock Center, Sears Tower, Standard Oil Building, World Trade Center가 이 구조방식으로 되어 있음.

기술/공학 > 토목/건설

용어해설(구조해석)

1. 구조해석 모델 : 절점과 유한요소, 경계조건데이터로 구성됨. 2. 절점(노드) : 트러스구조물 등의 골조구조물에서의 부재가 교차되는 점을 말함. 격점과 같은 말. 3. 절점좌표계 : 전체좌표계, 요소좌표계, 절점좌표계가 있는데, 절점좌표계의 경우 절점에 전체좌표계와 일치하지 않는 임의의 방향으로 구속조건, 경계스프링 또는 강제변위 등의 경계조건을 입력하거나 임의의 방향으로 반력을 계산하여 출력하고자 할 경우에 쓰임. 4. 경계조건 : Bondary Condition. 어떤 요소가 있을 때 그 요소의 특성이나 지지조건들로 인한 힘의 구속상태를 말함. 예로는 물체의 역학적 변형, 열의 전도, 유체의 흐름, 정전기의 전위 분포등을 들 수 있음. 5. 주절점과 종속절점 : 기하학적 상대거동의 구속은 임의 절점의 자유도에 한 개 또는 그 이상의 절점의 자유도를 종속시킴으로써 이루어지는데, 여기서 임의 절점을 주절점이라 하고 자유도가 종속되는 절점을 종속절점이라 함. 6. 요소(Finite Element) : 해석 영역 전체의 방정식을 단 번에 세우는 것이 불가능하므로 여러 개의 단순하고 작은 영역으로 분할하여 해석을 하는데, 이렇게 분할된 작은 영역들을 말함. 개개의 요소는 몇 개의 절점으로 이루어지고 인접 요소들간에 절점을 공유하며, 요소의 지배방정식은 전체 영역의 지배방정식과 동일함. 7. 보요소 : 인장, 압축, 전단, 굽힘, 비틀림 등의 거동에 대한 강성을 갖는 요소. 8. 트러스요소 : 축방향으로만 힘을 받는, 즉 축력만 존재하는 요소. 9. 평면응력요소 : 동일 평면상에 위치한 3개 또는 4개의 절점에 의해 정의되는 응력요소.평면 방향으로만 하중을 받을 수 있고 두께가 요소면의 전체에 걸쳐 균일한 박판의 모델링에 사용됨. 10. 평면변형요소 : 댐 또는 터널등과 같이 일정한 단면을 유지하면서 길이가 긴 요소. 다른 종류의 요소와 혼용할 수 없으며 요소의 특성상 선형정적해석에만 적용가능.

기술/공학 > 토목/건설

구조형식에 의한 분류

* 구조물에 작용하는 외력을 어떤 방법으로 구조체를 통해 지반에 안전하게 전달하는가? 1.3.1 평면구조(plate structure) * 응력전달이 평면적인 요소로 분해된다. 1. 라멘구조(rigid frame structure) * 기둥과 보는 강절점으로 이루어저 주로 휨으로 외력에 저항 * 주로 다층 건물에 적합 2. 트러스구조(truss structure) * 외력을 절점(핀절점)에 모인 부재의 축방향으로 분해하여지지 * 큰 간사이l 건물에 쓰임 3. 아취구조(arch structure) * 아취 상부의 하중을 아취 축을 따라 양측 아취대로 전달하는 구조 * 단독 아취와 타 구조와 병용하는 경우가 많다 4. 벽식구조(box frame structure) * 철근콘크리트 벽판과 바닥판을 일체로 구성 1.3.2 입체구조(space structure) * 외력에 대해 3차원적 저항을 하는 구조체 : 넓은 공간의 지붕구조로 이용 1. 절판구조(folded plate structure) * 평판을 접어 춤을 크게 높여 다면체상으로 하여 면내력에 의해 외력에 저항하는 구조 * 철근콘크리트, 프리스트레스트 콘크리트에 이용 2. 곡면판구조(shell structure) * 하중을 입체적으로 휜 곡면재의 내응력으로 처리하는 구조 * 원통형구조, 돔구조 3. 입체트러스구조(space truss frame structure) * 단일 부재로 3차원적으로 짜서 넓인 것, 입체적인 평면체로 만든 구조물로,부재는 인장 또는 압축력을 받는다. 4. 현수구조(suspension structure) * 지지 프레임에 케이블을 걸치고 여기에 로프를 달아 지붕판 구성체를 매달아 고정. * 기둥이 없는 넓은 공간 확보 공장. 경기장 등에 이용 5. 공기막구조(pneumatic structure) * 막상 재료로 공간을 덮어 건물 내외의기압차를 이용한 지붕구조 * 피막재료 : 헝겊. 플라스틱 필림. 금속판 등 사용, 경기장에 이용 2.1 개요 기초 : 건축물의 모든 하중을 받아 진반에 안전하게 전달하는 하부구조의 총칭으로 기초판(footing)과 지정(ground work)으로 구성된다. 2.2 지반의 구성 지층 : 흙(자갈, 모래, 실트, 진흙, 롬, 콜로이드)---토질시험(물리적, 역학적 성질) 2.2.1 지반조사 * 지내력 : 건축물의 하중을 받고 견디는 힘 * 지반조사 : 지내력의 크기, 지질의 양 부. 지하수의 유무. 지하 상수위. 수질 등 조사

기술/공학 > 토목/건설

트러스의 종류와특성

트러스(Truss)란 부재에 휨이 생기지 않게 접합점을 핀으로 연결한 골조구조이다. 교량이나 지붕처럼 넓은 공간에 걸치는 구조물의 형식으로서는 돌의 특징을 살린 아치 형식, 강의 높은 인장강도를 이용한 현수형식 및 보 형식의 것이 일반적으로 사용되고 있다. 보에 하중이 걸리면 보의 윗부분은 서로 밀고 아랫부분은 서로 당겨서 아래로 휘게 된다. 이 때 보를 구부리는 힘은 상하단이 가장 크고 중간에서는 작다. 즉, 보의 중간에는 아직 여력 또는 낭비가 있다고 말할 수 있다. 그래서 이 낭비 부분에 보를 보강해서 낭비를 없애려는 생각이 트러스의 시초이다. 곧은 막대를 조합해서 만든 삼각형은 안정된 형태이지만, 사각형은 변형하기 쉬우므로 보의 중간을 도려내어 생긴 형태는 삼각형이 좋다. 즉, 트러스란 곧은 강재나 목재(이것들을 부재라고 한다)를 삼각형을 기본으로 그물 모양으로 짜서 하중을 지탱하는 구조방법인데, 부재의 결합점은 사람의 관절처럼 자유롭게 회전할 수 있고, 또 하중도 절점에 작용하도록 공작되어 있으므로 트러스의 부재는 인장력이 작용하는 것과 미는 힘이 작용하는 것뿐이며 휘는 경우는 없으므로, 재료는 낭비가 적다고 할 수 있다. 또 짧은 막대를 조합해서 지간이 큰 공간을 걸치는 이점도 있다.

기술/공학 > 토목/건설

비렌딜 트러스란?

1. 개요(경사재가 없는 특수한 형태의 트러스) 1) 비렌딜 트러스란 트러스의 상현재와 하현재 사이에 수직재로 구성되어 있으며, 각 절점은 강접합으로 이루어져 고층건물 최하층에 넓은 공간을 필요로 할 때나 많은 힘을 받을 때 사용하는 구조이다. 2) 웨브(web)에 공간이 형성되어 구조적으로 합리성을 이루었고, 그 공간으로 에어컨 등을 설치하고 창으로도 사용이 가능하다. 3) 웨브(web)에 큰 공간을 낼 수 있으므로 에어컨, 닥트등을 설치하는 데 편리하며, H형강을 상,하현재 외 수직재로 사용하여, 트러스를 1층 높이로 제작하여 트러스 웨브를 창으로 사용할 수 있다. 4) 상부에 힘이 많이 작용할 때는 비렌딜 트러스를 여러 겹 겹쳐서 사용할 수 있다. 어떤 경우에는 경사재가 비효율적이어서 경사재가 없는 특수한 형태의 거더가 만들어지는데, 비렌딜트러스라고 한다. 5) 트러스구조와 다른점은 접합부가 힌지접합이 아니라 강접합되었다는 것이 다릅니다. 아시겠지만 강접합이 되면 접합부에서 회전모멘트가 발생하게 되지요. 모멘트가 발생하지 않고 축력만 받는 것이 트러스구조입니다. 이러한 복합골조가 여러 스팬으로 일정한 간격으로 구성되어 있다면 수평보의 경우는 연속보의 형태로 거동을 하게 되며, 기둥에서의 부재력은 지지되는 연속보 단부에서 발생하는 모멘트의 차가 기둥 모멘트가 되기 때문에 인접한 골조를 생각한다면 항상 상쇄되게 됩니다. 이론적으로는 가장 바깥쪽 두개 기둥만 있으면 버틸 수가 있습니다만 하중이 불균등하게 작용할 수도 있고 또한 횡방향 하중에 의한 저항도 고려한다면 내부기둥이 필요하게 됩니다. 이러한 복합골조은 보와 기둥의 저항특성에 의하여 횡방향 하중을 흡수하는데도 유리합니다. 6) 처음 생각한 사람 이러한 개념을 처음 생각한 사람이 바로 벨기에 발명가인 베렌디엘(Vierendeel)이며, 발명가 이름을 따서 이러한 구조를 비렌딜(또는 비렌디엘)트러스(Vierendeel Truss)라고 합니다. 교량설계에 일반적으로 많이 사용되지요. - 이 구조는 교량뿐만 아니라 건축구조에도 사용이 되는데, 우리나라에서 흔히 지하부분을 철근콘크리트를 사용한 강구조라멘(rigid frame)과 이것을 둘러싼 바깥 구조벽과 기초판으로 만들어진 지하구조를 사용합니다. 이러한 지하구조를 rigid frame foundation 또는 vierendeel truss foundation이라고 합니다. 건축구조분야에서는 이러한 골조구조물에서 보의 명칭을 vierendeel girder 또는 vierendeel truss 라고 말합니다. 앞서도 언급하였지만 정확하게는 사재에 의하여 삼각형의 뼈대가 만들어 지는 것이 아니기 때문에 truss라고는 할 수 없습니다.

기술/공학 > 토목/건설

슬림플로어 공법 개요

철골조 건물은 공기단축, 장스팬 및 공간의 효율적 이용과 시공관리의 편리함에도 불구하고 R.C조의 플랫슬 래브구조에 비하여 층고가 높아지는 단점이 있다. 따라서 사선제한이나 높이제한이 있는 지역의 경우, 층수의 한계로 인해 건축 가능한 용적률을 포기해야 하는 문제점이 있어 새로운 공법의 개발이 요구되어 왔고, 비대칭 H형강을 이용한 슬림 플로어 공법은 이러한 요구를 충족시키기 위하여 개발된 공법이다. 철골조 건축물에서 층고 절감이 가능한 슬림플로어 공법은 슬림빔(상하부 플랜지의 폭이 다른 압연비대칭 H형강)과 일반데크플레이트에 비하여 춤이 깊은 DeepDeck(D=250mm)으로 구성된다. 슬림플로어 공법을 적용하면 바닥 구조 시스템의 전체 높이를 기존 철골조 시스템에 비해 약 25~40cm가량 절감할 수 있게 된다. 건물의 층고를 낮추게 되면 골조 및 내외부 마감재 등을 포함하는 공사비가 약 2% 절감되며, 동일 높이에서 더 많은 층수의 건축이 가능하여 연면적이 증가되므로 분양 또는 임대면적이 증가되는 효가를 볼 수 있다. 2) 슬림플로어 공법 시스템 기존의 철골조 건물은 H형강 보의 상부 플랜지 위에 데크를 설치하고 콘크리트를 타설하여 슬래브를 형성하고 슬래브와 H형강보는 쉬어 스터드에 의하여 일체화가 된다. 즉 슬래브가 H형강 보 위에 걸쳐지게 되므로 바닥구조 시스템의 높이가 철근콘크리트조에 비하여 높아지게 된다. 그러나 슬림플로어 공법은 슬래브를 철골보 내에 삽입하여 시공되고, 철골보는 보의 단면효율을 높이고 보의 춤을 작게 한, 하부 플랜지의 폭이 상부 플랜지의 폭에 비하여 슬림빔을 사용하여 바닥구조 시스템의 높이가 기존 철골조에 비하여 크게 절감되어 층고를 줄일 수 있다.

기술/공학 > 토목/건설

<